3.680 \(\int \frac{\sqrt{c+d x^2}}{a+b x^2} \, dx\)

Optimal. Leaf size=81 \[ \frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b} \]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(Sqrt[a]*b) + (Sqrt[d]*ArcTanh[(Sqrt[d
]*x)/Sqrt[c + d*x^2]])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0443272, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {402, 217, 206, 377, 205} \[ \frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/(a + b*x^2),x]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(Sqrt[a]*b) + (Sqrt[d]*ArcTanh[(Sqrt[d
]*x)/Sqrt[c + d*x^2]])/b

Rule 402

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^2}}{a+b x^2} \, dx &=\frac{d \int \frac{1}{\sqrt{c+d x^2}} \, dx}{b}-\frac{(-b c+a d) \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{b}\\ &=\frac{d \operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{b}-\frac{(-b c+a d) \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{b}\\ &=\frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0322809, size = 84, normalized size = 1.04 \[ \frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} b}+\frac{\sqrt{d} \log \left (\sqrt{d} \sqrt{c+d x^2}+d x\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/(a + b*x^2),x]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(Sqrt[a]*b) + (Sqrt[d]*Log[d*x + Sqrt[
d]*Sqrt[c + d*x^2]])/b

________________________________________________________________________________________

Maple [B]  time = 0.008, size = 948, normalized size = 11.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a),x)

[Out]

-1/2/(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/2*d^(
1/2)/b*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1
/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/2/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/
2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1
/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*a*d+1/2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*
d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1
/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*c+1/2/(-a*b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-
a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/2*d^(1/2)/b*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d
)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+1/2/(-a*b)^(1/
2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((
x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*a*d-
1/2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)
/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^
(1/2)))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.72887, size = 1288, normalized size = 15.9 \begin{align*} \left [\frac{2 \, \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right ) + \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left (a^{2} c x -{\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b}, -\frac{4 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) - \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left (a^{2} c x -{\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b}, \frac{\sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} +{\left (b c^{2} - a c d\right )} x\right )}}\right ) + \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right )}{2 \, b}, -\frac{2 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) - \sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} +{\left (b c^{2} - a c d\right )} x\right )}}\right )}{2 \, b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c
*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2
 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/b, -1/4*(4*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c
)) - sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2
 - 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/b,
1/2*(sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*
d^2)*x^3 + (b*c^2 - a*c*d)*x)) + sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/b, -1/2*(2*sqrt(-d)*
arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*
sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)))/b]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}}}{a + b x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a),x)

[Out]

Integral(sqrt(c + d*x**2)/(a + b*x**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.14559, size = 151, normalized size = 1.86 \begin{align*} -\frac{{\left (b c \sqrt{d} - a d^{\frac{3}{2}}\right )} \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{\sqrt{a b c d - a^{2} d^{2}} b} - \frac{\sqrt{d} \log \left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2}\right )}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-(b*c*sqrt(d) - a*d^(3/2))*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2
))/(sqrt(a*b*c*d - a^2*d^2)*b) - 1/2*sqrt(d)*log((sqrt(d)*x - sqrt(d*x^2 + c))^2)/b